A GENERALIZED POINCARE THEOREM

FOR DuAL LIE TRANSFORMATION GROUPS

TUONG TON-THAT

ABSTRACT. Let k£ and n be integers such that & > 2n > 0. Let
M be the complex analytic manifold defined by M = {z € C"*¥ :
zz! = 0, rank (z) = n}. Let G = SO(k,C) and G’ = GL(n,C),
then Witt’s theorem on quadratic forms implies that G is a maximal
connected Lie group acting transitively on M by right multiplication.
Also, G’ is a maximal connected Lie group acting freely on M by left
multiplication. If f € C*(M), z € M, g € G, and ¢’ € G’ define

R(g)f (vesp. L(g')f) by

(R(9)f)(x) = f(zg) and (L(g)f)(x) = f(g~ ).

If D¥(M) denotes the algebra of all analytic differential operators on
M then an element D € D¥(M) is called right (resp. left)-invariant if
DR(g) = R(g9)D, Vg € G (resp. DL(g") = L(¢')D, Vg’ € G").

THEOREM: Let Dy(M) (resp. D¥(M)) denote the subalgebra of
DY (M) of all left (resp. right)-invariant analytic differential opera-

tors on M. Let U(g) (vesp. U(g')) denote the universal enveloping
algebra generated by the infinitesimal action of R(g) (resp. L(g’)).
Then we have

Dy (M) = U(g) and Dy (M) = U(g).

Moreover, the commutant of Dy (M) in D¥(M) is D¥ (M), and vice-
versa.

This theorem also holds for other types of dual Lie transformation

groups acting on analytic manifolds.
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ondary 16530, 14L35.
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1 INTRODUCTION

In 1900 H. Poincaré established the existence of the universal enveloping algebra
of a Lie algebra and proved one of the most fundamental results in the theory of
Lie groups and Lie algebras. This theorem which is valid for a Lie algebra over
an arbitrary field is usually called the Poincaré-Birkhoff-Witt theorem; however
for the case of a real or complex Lie algebra it is entirely due to Poincaré as
shown in [TT-T].

THEOREM 1.1 (Poincaré). Let G be a real or complex Lie group with Lie

algebra g. Let U(g) denote the universal enveloping algebra of g. If {X; : 1 <

i < n} is a basis of g then the ordered monomials 1 and X;, -+ X; (s > 1,41 <
- <'ig) form a basis for U(g).

Assume that G is a real or complex connected Lie group. For each g € G, the
translations Iy, 7 : G — G defined by l,(z) = gz and r4(z) = zg, z € G, are
analytic diffeomorphisms of G onto itself. Let D“(G) denote the algebra of
all analytic differential operators on G. A differential operator D of D¥(G) is
said to be left (resp. right)-invariant if it is invariant under all left (resp. right)
translations. Let [-,:] denote the commutator product of D¥(G). If A is a
subalgebra of D¥(G) then the centralizer (or commutant) of A in D¥(G) is
defined as the set {D’ € D¥(G) : [D',D] =0,V D € A}, and the centre of A is
defined as the set {D' € A:[D’,D] =0,V D € A}. Then the following can be
easily deduced from the Poincaré theorem.

COROLLARY 1.2 (To Poincaré Theorem). If DY (G) (resp. D¥(G)) denotes the
subalgebra of D¥(QG) of all left (resp. right)-invariant analytic differential oper-
ators on G then Dy (G) (resp. DY (G)) is isomorphic to the universal enveloping
algebraU(g). Moreover, the centralizer of Dy (G) in D¥(G) is DY (G), and vice-
versa. Finally, the centres of Dy (G) and DY (G) coincide with DY (G)NDE (G).

In the context of Lie transformation groups on analytic manifolds the corollary
above can be phrased as follows: Consider G as a G-transformation group act-
ing on the analytic manifold M = G to the right and as a G'-transformation
acting on M to the left; then the subalgebras of all left (resp. right)-invariant
analytic differential operators on the analytic manifold M are mutual com-
mutants in D¥(M). We shall generalize this result to dual transformation
groups acting on analytic manifolds. The simplest case with G = GL(k,C),
G' = GL(n,C), M = {x € C"* . 2 of maximum rank} was considered in
[TT5]. In this article three more cases are considered. They are more intricate
and Witt’s theorems on quadratic forms and skew-symmetric bilinear forms
play a crucial role in their resolution. The general case will be considered in a
future publication.
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2 A DuALITY THEOREM FOR COMMUTANTS IN D“ (M)

Let E = C* G = SO(k,C), G’ = GL(n,C). Then it is clear that G’
(resp. GL(k,C)) is the maximum linear group acting on E by left (resp. right)
multiplication. As a subgroup of GL(k,C), G acts on F by right multiplication
and leaves the nondegenerate symmetric bilinear form (x,y) — tr(xy?), z,y €
C*F invariant. If S(E*) is the symmetric algebra of all polynomial functions
on E then the action of G on F induces an action of G on S(E*), denoted by
g-p, for g € G, pe S(E*). We say that p € S(E*) is G-invariant if g-p = p,
for all g € G. The G-invariant polynomial functions form a subalgebra J(E*)
of S(E*). If JL(E*) is the subset of all elements in J(E*) without constant
term we let J(E*)S(E*) denote the ideal in S(E*) generated by J.(E*).
Recall ([We, Theorem 2.9A]) that J; (E*)S(E*) is generated by the n(n+1)/2
algebraically independent polynomials

pij(x Zxx] 1<i<j<n, z€E, (2.1)

together with the (k x k) minors of the matrix  (which are 0 when k > n). If P
is the null cone of the common zeros of polynomial functions in J; (E*)S(E*)
then by the Hilbert Nullstellensatz the ideal in S(E*) of all polynomial func-
tions which vanish on P is \/J(E*)S(E*). By [D-TT, Theorem 2.1] the ideal
J+(E*)S(E*) is prime if and only if £ > 2n, and the scheme P which is then
equal to the set {x € F : xz' = 0} is a complete intersection, with one open
dense orbit.

Henceforth we assume that k > 2n. Let M = {z € F : za' = 0, rank(z) = n}
then obviously M is dense in P. Since (¢'x)(¢g'z)! = ¢'(zz')(g")! it fol-
lows immediately that G’ is the maximum linear group acting on M by
left multiplication. For v € GL(k,C) and p € S(E*) define R(v)p by
(R(y)p)(x) = p(zy), then clearly « leaves M, and hence P, invariant if and
only if R(y)pi; € J(E*)S(E*) for all 1 < i < j < n. Obviously, R(v)p;;
are quadratic polynomials, and since the p;; form a basis for the quadratic
polynomials in J (E*)S(E*) we have

Vpij = Zcrsprs, 1<r<s<n, (2.2)

where C? € C are constants depending on 7. For 1 < i <mn, 1 <t <k let
x(i,t) denote the element of F which has the (4,t)-entry equal to 1 and all
other entries equal 0. Then an easy computation shows that

(R(v)pii)(x Z’Ytl = Z spTg C”'

It follows that Zle 74 = C € C for all ¢, and i. Choose x of the form
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x(i,t) + x(i,t") with ¢ # ¢’ then we obtain

k

(R(paa) (@i ) + 26, ) = D (v +70)?
=1

= Z Clpps(2(iy t) + x(i,t))

=201 =2C.

Thus

k k k k
Z(’Ytl +ye)” = Z it + Z’Ytzfl +2 Z’Ytl%/l =20
=1 =1 =1

=1

k
=C+C+ QZ%Z%/L
=1

It follows that we have the system of equations
k k
Z%Ql =C, Z%l'yt/l =0 forallt,t’ =1,...,k, t#t, (2.3)
=1 1=1

or equivalently, vty = CI.

Since (det(y))? = C* and v is invertible it follows that C' # 0. Let \ be a fixed
square root of C' and set g = 1, then g'g = I, or g € O(k,C). It follows that
the largest group acting on M by right multiplication is C*O(k,C) = {A\g: A €
C,g € O(k,C)}, and G is a maximal connected linear group acting on M by
right multiplication.

By Witt’s theorem on symmetric bilinear forms (see, e.g., [Ar] and [TTI,
Lemma 2.8]) G acts analytically and transitively on M. More precisely, if
xo € M then M is the G-orbit of z¢, and if G, is the stability subgroup at xg,
then it is easy to verify that G, is isomorphic to SO(k — n,C). Moreover, the
map Gg,g — xog is an analytic diffecomorphism of G, \G onto M (see, e.g.,
[Va, Theorem 2.9.4]). Thus M is an analytic manifold of complex dimension
nk — n(n + 1)/2 (this also follows from [TT1, Lemma 2.9] and the implicit
function theorem for analytic functions [H6, Theorem 2.1.2]).

Now let us show that G’ acts freely on M, i.e., the stability subgroup G/, is
{1¢'} at every € M. Indeed, if x € M then by the assumption rank(z) = n
there exist n columns x;, ---x;, ,i1 < --- < iy, of  such that the n x n
matrix x,, formed by them is invertible. So ¢’z = x implies that ¢z, = x,, or
g = znx,;t = 1g. Now let us recall the definition of differential operators on
a complex manifold M of dimension m (see, e.g., [He, Chapter 10]).

If (p,U) is a local chart on M with ¢(p) = (z1(p),...,zm(p)) € C™, p € U,
and f € C®°(M), set f* = foyp L p(U) Cc C™ — C. Set 9; = 9/0z;

(1 <i<m)andif @ = (ay,...,qy) is an m-tuple of indices o; > 0 we put
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D@ = 93 ...9%m. Then a linear transformation D: C°(M) — C(M) is
called a differential operator on M if the following condition is satisfied:

For each p € M and each chart (p,U), p € U, there exists a locally finite
set of functions h(,) € C*°(U) such that for each f € Cg°(M) with support
contained in U,

[Df](p) = (Z)ha (D f*] (p(p)) ifpel,

[Df](p) =0, ifp¢U.

(2.4)

If M is a complex analytic manifold then a differential operator D is called a
holomorphic or complex analytic differential operator if the functions h(,) in
Eq. (2.4) are holomorphic (or complex analytic).

By Hilbert’s fifth problem G (resp. G’) can be equipped with an analytic struc-
ture (see, e.g., [M-Z]) so that they act analytically on M. Let D“(M) denote
the algebra of (complex) analytic differential operators on M.

Now consider a global G-transformation group on an analytic manifold M (see,
e.g., [Pa] or [Va, 2.16]). Let ¢p: G x M — M ((g,2) = g-z, g € G, x € M)
denote the global action of G on M. For x € M, f € C>®(M) we define
(®(g)f) (z) = f(g7' - z). Let g denote the Lie algebra of G and U(g) the
universal enveloping algebra of G. Then for X € g and z € M we define

d(X),(f) = (diﬂexp(—tX) ~ x>) B (2.5)

t

for all f defined and C* in a neighborhood of . The map X — d¢(X)
is a homomorphism of g into the Lie algebra of analytic vector fields on M.
Therefore it extends to a homomorphism a — d¢(a), a € U(g), of U(g) into

the algebra D“ (M) of analytic differential operators on M (see [Va, Lemma
2.16.1)), where if a = X7 - -- X, (X; € g) then

—~ 0 0
dp(a).(f) = (87 e &f(exp(_trXr) -+ -exp(—t1X1) 95) ; (2.6)
1 0
where the suffix 0 indicates that the derivatives are taken when t; =--- = ¢, =

0. For our problem we consider the cases when ®(g’) = L(¢') and ®(g) = R(g),
where (L(g')f) (x) = f ((¢')"'x) and (R(9)f)(z) = f(zg) for ' € G, g € G,
and z € M. Let U(g') and U(g) denote the images of U(g’) and U(g) under
the maps dL and cﬁ, respectively.

DEFINITION 2.1 A differential operator D of D¥(M) is said to be right

(resp. left)-invariant if D(R(g) /) = R(9)(Df) (resp. D(L(¢")) = L(¢')(DS))
for all g € G (resp. ¢’ € G'), and for all f € C*°(M).

THEOREM 2.2 Let Dy (M) (resp. D (M)) denote the subalgebra of D¥ (M) of
all left (resp. right)-invariant analytic differential operators on M. Then
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(i) Df (M) =U(g) and Dy (M) = U(g'),

(ii) the commutant of Dy(M) in D¥(M) is DY (M), and vice-versa. More-
over, the centres of Dy(M) and DY (M) coincide with the subalgebra
Dy (M) NDY(M).

Proor. (i) Let X € g', g€ G,z € M and f € C°(M). Then

d

AL(X)(R(9))(x) = =

((R(g).f)(exp(—tX)z)),_g

— %(f(exp(ftX)xg))t:O,

while

R(g)(dL(X)[f)(z) = (dL(X) [)(zg)

= 2 (Flexp(~1X)rg))io

Thus any vector field X = dL(X) € U(g') is right-invariant, and it follows
immediately that ¢(g’) € D¥(M). Similarly we have U(g) C Dy (M). Let us
show that D¥(M) C U(g') and D¥ (M) C U(g).

Let £ denote the Lie algebra of all right-invariant analytic vector fields on M.
Then L is an involutive analytic system (see [Va, p. 25] for the definition),
i.e., if U is an open subset of M and X,Y are right-invariant vector fields
on M then [X,Y] is (obviously) right-invariant. Then the Global Frobenius
Theorem (see, e.g., [Va, Theorem 1.3.6]) implies that: given any point of M,
there is one and exactly one maximal integral manifold S of L containing that
point, i.e.,; § is a connected analytic submanifold of M and for each y € S,
L, is the tangent space Ty (S). In fact since £ is an infinitesimal group [Pa,
Theorem IV, p. 98] implies that S is the image of a unique connected Lie
transformation group H of M. Since G’ is the largest linear group acting on
M by left multiplication and dL(g’) C L it follows that G’ C H, and hence,
G' = H. Tt follows that if {X1,...,X,2} is a basis of g’ then {5(1,...,5(”2},
where X; = dL(X;), 1 < i < n?, is a basis for right-invariant analytic vector
fields on M. Therefore if D € D¥(M) then we can find a unique set of locally
finite functions h(,) € C*(M) such that

D= hgyX®. (2.7)
(o)

Since the X (@) are right-invariant, we have

D=D" =% h X (geq) (2.8)
(@)
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The relations (2.7) and (2.8) imply that all the h(,) are right-invariant, and

since G acts transitively on M, they must be all constant. Thus D € U(g') for
all D € D¥(M), and hence, D¥ (M) C U(g'). To show that D¥ (M) C U(g) we
need the following

LEMMA 2.3 For each x € M let G'x = {g'xz : ¢’ € G’} denote the orbit of x.
Let X = M/G' be the set of all orbits G'x, x € M, and define 7: M — X
by assigning to each x € M its orbit G'xz. Then (M,X,n,G’) is a principal
G’ -bundle.

PROOF. Definey: MxG' — MxM by y(z,¢') = (z,¢'z) and T = y(M xG') =
{(z,g’x) : © € M, g € G}. Then since G’ acts freely on M, v is injective.
Now suppose that lim, .o x, = 2z, and lim, o g2, = y for z,,z,y € M,
g, € G. The same argument used in the proof that G’ acts freely on M
implies that there exists a submatrix s[z] of z such that s[z] € G'. If s[z,,] de-

notes the corresponding submatrix of z, then clearly lim,_, o s[z,] = s[z].
So for n sufficiently large we may assume that s[z,] € G’. Then clearly
lim, o0 s~ z,] = s712] and lim, . ¢, s[r,] = s[y]. By the continuity of

the action of G’ on M we have s[y] € G'. Write g}, = (g.,8[xn])s ™ [x,] for suffi-
ciently large n then lim,, . g/, = s[y]s~![z]. Set ¢’ = s[y]s~![z], then ¢’ € G,
lim, g, = ¢, and lim,, o g, 2 = g’z = y. Thus T is closed in M x M,
and v is a homeomorphism of M x G onto I'. Now all the hypotheses of [Va,
Theorem 2.9.10] are met, and we can conclude that there exists an analytic
structure on X such that 7 is an analytic immersion (i.e., (dr), is injective
for all z € M). Moreover for each p € X we can select an open subset ) of X
containing p and an analytic diffeomorphism &y = € of G’ x Y onto 7~ 1()),
such that

'y y)=neld,y) (g0 eG, yed).

That is, in other words, (M, X, w,G’) is a principal G’-bundle. =

Now let us finish the proof of part (i) of the theorem.

Since G acts analytically and transitively on the analytic manifold M [Va,
Lemma 2.9.2] implies that for each x € M the map r: g — xg (g € G) is an
analytic submersion of G onto M (i.e., (dr), is surjective for all g € G). It
follows that if {Y7,...,Yy} is a basis of g then there exists a basis for analytic
vector fields of M of the form {Y7,...,Y;,}, where m = dim(M), and each
Y; = dR(Y;) for some j, 1 < j < d. It follows that every D € D¥(M) can be
expressed as

D=> k@Y, (2.9)
(o)
where {k()} is a set of locally finite analytic functions. Since the Y (@ are
left-invariant, we have
’ ly! 5 (a
D=D =% ki Y™  (§ed). (2.10)
(o)
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The relations (2.9) and (2.10) imply that all the k) are left-invariant. By
Lemma 2.3 a basic open set M is diffeomorphic to G’ x ) where ) is an open
subset of X. A typical point in that basic open set is, for example, of the form
xr = (xg'+x) € M. A function k() that is left-invariant will be independent of
the n? variables in the block containing ¢’, and since we can let g’ occupy any
block in the matrix z it follows that k() must be constant. Hence D € U(g),
and the proof of part (i) is completed.

(ii) The proof of part (ii) depends on the following

LEMMA 2.4 Let D € D¥(M) then the following statements hold.

(i) [dL(X),D] = 0 for all X € g’ if and only if D(L(g") = L(¢')D for all
g €G.

(ii) [dR(Y),D] = 0 for all' Y € g if and only if D(R(g)) = R(g9)D for all
ge@qG.

PRrROOF. Since both G’ and G are connected the two statements are similar,
so we will only prove (i). To prove (i) we first consider ¢’ = ¢'(t) = exptX,
X € ¢/; then we have

L(¢")DL((¢") ") = (exp(dL(tX))D.
It follows that
L(¢g")D = DL'(g) <= [L(X), D] = 0.

Since G’ is connected, G’ is generated by the image of the exponential map
(cf. [Go, Cor. I, p. 6.9]), i.e., an arbitrary element ¢’ of G’ can be expressed in
the form ¢’ = exp(X1) exp(X2) - - -exp(X,), X; € ¢, it follows from [Na, Prop.
2.10.10] that

[dL(X),D]=0,VX €g' <= L(¢J)D = DL(¢'),Vg € G".

L]
Now part (i) of the theorem and Lemma 2.4 imply that the commutant of
Dy (M) in D¥(M) is DY (M), and vice-versa. Finally, by definition the centre
of Dy(M) is the subalgebra of elements of Dj’(M) which commute with all
elements of Dy’ (M). So obviously the centre of Dy’ (M) and similarly the centre
of D¥ (M) coincide with DY (M) NDY(M). m
Now let us consider the Lie transformation group G’ x G acting on the analytic
manifold M, where G’ = GL(n,C), G = Sp(2k,C), M = {z € C"*?¢ : p5;2t =
0, rank(z) = n}, k > n, and

5 — [ 0 —I ]

P lnoo

with I denoting the identity matrix of order k.
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Recall that Sp(2k, C) is the group of all complex 2k x 2k matrices g satisfying
gskg" = si. Then by Witt’s theorem on skew-symmetric bilinear form (see, e.g.,
[Ar] and [TT2, Lemma 1.7]) it follows that G acts analytically and transitively
by right multiplication on M. Obviously G’ acts freely by left multiplication
on M, and G and G’ are both connected. Thus we have

THEOREM 2.5 For k > n let G = Sp(2k,C), G’ = GL(n,C), and M = {z €
Cn*2k : psat = 0, rank(x) = n}. Then Theorem 2.2 holds for this pair of Lie
transformation groups acting on M.

Finally, let p, ¢, and k be positive integers such that & > max(p, ¢) and consider
G’ = GL(p,C) x GL(¢,C), G = {(9,9") : g € GL(k,C), ¢ = (¢7")'} =
GL(k,C), and

M = {{ il ] e Clrra)xk . 4 e CP¥F gy € CI¥F,
2

r12h = 0, rank(z1) = p, rank(zg) = q}.

Then by Witt’s theorem on quadratic forms, [TT3, Lemma 1.1] and [TT4,
Theorem 5.1], it follows that G acts analytically and transitively on M via the

action
€ xr1g
_ )
({332 ]’g> {3329/ ]

Obviously G’ acts on M freely via the action

ro x1 911531 / ’
(91, 95) » — , g1 € GL(p,C), g5 € GL(q,C).

T3 952
Moreover, both G and G’ are connected. Thus we have

THEOREM 2.6 Theorem 2.2 holds for the pair of Lie transformation groups G,
G’ acting on the analytic manifold M described above.

3 CONCLUSION

In [TT5] we used the duality theorem for commutants in D (M) with G =
GL(k,C), G' = GL(n,C), M = {x € C™* : z of maximum rank} to find
the Casimir invariants of the infinite-dimensional group GL(oco,C). In turn, a
set of generators of these Casimir invariants determine the irreducible unitary
representations of the group U(co). We hope that Theorems 2.2, 2.5, and 2.6
will allow us to find the Casimir invariants of some other infinite-dimensional
groups.
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